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SUMMARY

The tunnel—induced upwash field for a point element of 1ift in a
rectangular tunnel is shown to consist of three superimposed flelds
that, except for relative position, are independent of the lateral or
longitudinal location of the 1ift element in the tunnel. One of these
fields is also independent of the type of tumnel (open or closed) and
of the width—height ratio of the tunnel, and the other two, which
depend on this ratio, are ldentical (except, perhaps, for sign). A
contour chart of the first field is given in the present paper; hence,
only one other contour chart need be calculated for any given tunnel
to permit the determination of the induced upwash field for any position
of the lifting element. Contour charts of thie other field are given
for three specific tunnels: an open tunnel of 2:1 width-height PHLIO,
a closed tunnel of 2:5 width-height ratio, and a closed tunnel of TOL T
width-height ratio. By superposition of -results for various locations
of the 1lifting element, the total field may be found for a wing of any
plan form and with any distribution of 1ift.

For tunnels that are not rectangular or that cannot be considered
approximately rectangular, the corresponding procedure requires the
preparation of a chart for each of several spanwise locations of the
1ifting element. Even this procedure appears simpler and more generally
applicable than the calculation of induced upwash for a geries of wing
spang and sweep angles.

INTRODUCTION

As is well known, the calculation of subsonic wind—tunnel-wall
interference at a straight unyawed 1ifting line is reducible to a
relatively simple two—dimensional flow problem; whereas the corresponding
calculation for a yawed or swept lifting line or the calculation of
induced camber or of the downwash correction at the tail cannot be
gimilarly simplified. Because of the present Ilntensive study of swept—
wing end triangular—wing configuratlions, much effort is being directed
toward evaluation of tunnel interference for such wings. In general
the calculations are very cumbersgome (see, for example, references 1
and 2), not only because of the three—dimensional character of the flow
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problem but also because the preparation of a comprehensive set of
corrections for a particular wind tunnel entails calculations for at
least a two—parameter family of wings, that is, for wings of various
gpans and various sweep angles. i

Tn some recent studies made at the Langley Laboratory it became
evident that meking computations of tunnel—interference flows for a two—
parameter family of wings was an unnecessary complication. Results of
equal accuracy can be achieved by a somewhat different and much more
flexible method which, in general, requires computation of only &a one—
perameter family of charts and, for a rectangular tunnel, requires the
computation of only two charts. Furthermore, the computations for
these charts, which can be used for any wing, are generally gimpler
than the computation of the tunnel interference field for a particular
wing by the usual method (in which the wing loading is represented by a
combination of yawed horseshoe vortices).

The proposed procedure is possibly known at some aeronautical
laboratories. Because of its apparent absence from the llterature,
however, and because procedures gimilar to those of references 1
and 2 appear to be in general use, the present paper has been prepared
which outlines the method, describes the computations, and gives
examples of the derived charts. This paper is concerned exclusively
with the calculation of tunnel—induced vertical velocitles in the
horizontal center plane of the tunnel, corresponding to a specified
load distribution on the wing, which is also assumed to lie in the
same plane. Modification of the procedure would be required for
application to triangular or highly swept wings at very high angles
of attack. No effort is made to discuss the corrections to the
measured force and moment characteristics, since the effects of the
induced upwash velocity on these characteristics are discussed in
reference 1. .

SYMBOLS
r strength of horseshoe vortex
Ns span of horseshoe vortex
AL 1ift of wing segment
AS area of wing segment
cy mean 1ift coefficient of wing segment

wing 1ift coefficient

S wing area
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a, b, c, and 4

&, Bt

o, P, wnd ¥

alr density

stream velocipy

tunnel width

tunnel height

longitudiﬁal coordihate

lateral coor&inate

vertical coqfdinate

upwash veloéity

tunnel cross—sectional aréa
cross—sectional area of tunnel having same

proportions as actual tunnel, but in which
tunnel width is unity

gemi—infinite doublet line, similar to doublet line
in tunnel

semi—infinite doublet line, reverse of doublet line
in tunnel

gemi—infinite source line
semi—infinite sink line

points on wing where 1lift is assumed to be
concentrated

nearest lateral images of points a, b, c, and d

points on wing where tunnel—induced upwash angles
are to be determined

CAICULATION OF TUNNEL INTERFERENCE

Representation of Wing Loading

For purposes of computing the tunnel interference by the method
to be described, the assumed loading on the wing 1s approximated by
a distribution of point concentrations of 1lift, about as indicated
in figure 1. Roughly, this distribution i1s chosen by considering the
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wing area to be made up of several smaller areas or segments, estimating
the 1ift on each, and locating each equivalent point concentration of
1ift at the approximate centroid of the 1lift on each segment. As has
frequently been shown, the tunnel interference field is determined mainly
by the total 1ift and the total rolling moment and is otherwise relatively
independent of the precise 1ift distribution (references 3 and 4);
accordingly, representing the continuous loading by several discrete
point concentrations in the indicated manner is normally satisfactory for
the calculation of the tunnel interference field. In any event, where a
question arises as to the adequacy of the representation used (as in the
case of large—span wings), accuracy can be improved by increasing the
number of points or even extending the procedure from a summation to a
graphical or numerical integration.

Associated with each concentration of 1ift is a horseshoe vortex
of infinite strength and zero gpan extending downstream from the point
where the 1lift is considered to be concentrated. The moment I'Ag of
each horseshoe vortex 1s given by the 1lift equation AL = gVI[As. Since
the field of such a degenerate horseshoe vortex is easily shown to be
equivalent to that of a line of source—sink doublets (reference 5), -it
will be referred to, for convenience, as a doublet line. The problem to
be discussed in the succeeding sections, then, is the determination of
the tunnel—interference flow resulting from the presence of a group of
doublet lines similar to that indicated in figure 1.

Rectangular Tunnels

Image system and interference fileld for closed tunnel.— Figure 2(a)
shows the image system for one doublet line located in the horizontal
plane of symmetry of a closed rectangular tunnel. The tunnel boundary
is indicated by heavy lines and the boundaries of the image tunnels are
indicated by light lines. The image doublets are represented by plus or
minus signs according as they are the same as, or the reverse of, the
doublet in the tunnel. This image system satisfies the boundary condition
that the velocity components normal to the walls must be zero.

The complete system of doublets in figure 2(a) is seen to comprise
two superimposed, doubly infinite, 2b by h rectangular arrays of doublets.
One array, indicated by circles, may be considered as centered at the
original doublet (double circle) in the tunnel; the other array, indicated
by squares, may be considered as centered at the nearest horizontal Image
doublet (double square)-

The interference field is thus made up of two parts:

(a) The field of a complete rectangular array haviﬂé its center
at the double square.
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(b) The field of a complete rectangular array having its center
at the double circle with, however, the field of the center
doublet omitted (since 1t represents the 1ifting element
itself). :

Basgis of proposed calculation procedure.— The dimsnsions of each array,
and hence its associated flow field, are determined only by the dimensions
‘of the tunnel and are independent of the lateral or longitudinal location
of the 1lifting element in the tunnel. 'Accordingly, once the two fields
have been calculated, they may be used for finding the interference
corresponding to a lifting element loceted anywhere in the horizontal
center plane of the given closed rectangular tunnel. The procedure is
indicated in figure 3 which shows (plan view) a lifting element and
its nearest image. In figure 3(a) i1s indicated the contour chart of
induced upwash velocities calculated for a 2b by h dbubly infinite
array of unit doublets with the center doublet omitted. The point on
the contour chart that is located at the head of the omitted doublet line
is indicated as the origin; and the chart i1s placed so that this point falls
on the 1ifting element, designated a. In figure 3(b) is tndicated the
contour chart for the complete doubly infinite array, placed so that its
origin falls on the first Image, designated a'. At any specified point a
in the horizontal center plane of the tunnel, the induced upwash corre—
sponding to the given element of 1ift is found by adding the values read
at that point from the contour charts in figures 3(a) and 3(b) and
multiplying the sum by the strength of the equivalent doublet.

The procedure may be slightly modified to take advantage of the fact
that the chart of figure 3(b) is equivalent to the sum of two other charts,
nemely, the chart of figure 3(a), which is for the doubly infinite array
with the center doublet omitted, and a chart for a single doublet (that
which is omitted in the chart of figure 3(a)). Accordingly, the chart of -
figure 3(a) and a chart for a gsingle doublet should suffice to obtain the
desired upwash values. In this modification, the step indicated in
figure 3(b) is replaced by the two steps indicated in figures 4(a) and 4(D).
Three readings are thus necessary instead of two; since the chart for a
single doublet is given in the present paper (fig. 5), however, this
modification requires that only the chart of figure 3(a) be prepared for
each given rectangular tunnel.

Image systems for other rectangular tunnels.— In figures 2(b) to 2(f),
are shown the Image systems for five other rectangular tunnels, namely,
those that are, respectively,

(1) Open on all four sides
(2) Closed at the sides but open at the top and bottom
(3) Closed at the top and bottom but open at the sides

(4) Closed only at the bottom

(5) Closed, containing a semispan reflection model
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Open boundaries are indicated by dashed lines and closed boundaries, by
golid lines. In each of these cases, as with the completely closed
tunnel, the image system is seen to be composed of two 2b by h rectangular
arrays so that the procedure Just outlined should also apply for these
configurations, except that for some of the tunnels, however, the two
arrays have opposite signs so that the readings from figures 4(a)

and 4(b) must be subtracted from, instead of added to, those from

figure 3(a). The rectangular arrays are not, however, all of the same
type as for the completely closed tunnel. The image systems can be
briefly described as follows:

For a closed tumnel (fig. 2(a)), each array consists of alternate
horizontal rows of plus and minus doublets, and the two arrays have the
same sign (that is, the nearest horizontal image is plus).

For an open tunnel (fig. 2(b)), -all the doublets of each array have
the same sign, but the two arrays have opposite slgns.

For a tunnel closed at the sides but open at the top and bottom
(rig. 2(c)), all the doublets of each array have the same sign and the
two arrays also have the same sign; that is, only plus doublets occur
in the image system. '

For a tunnel closed at the top and bottom but open at the sides
(fig. 2(d)), each array consists of alternate rows of plus and minus
doublets, and the two arrays have opposite signs.

For a tunnel closed only at the bottom (fig. 2(e)), the signs for

the image system in the first, third, fifth, . . . rows above the plane
of the wing are, respectively, opposite to those in the first, third,
fifth, . . . rows below the plane of the wing. Since the net effect

of the odd numbered rows on the upwash velocity in the center plane is
thus zero, they may be neglected. Two 2b by 2h arrays remain having
alternate rows of plus and minus doublets and the two arrays have
opposite signs.

For a closed tunnel containing a semispan reflection model
(fig. E(f)), each array has alternate rows of plus and minus doublets
and the two arrays have the same sign. In the Indicated image system
the image in the double square, which represents the second half of
the reflection model, must, like the model itself, be excluded from
congideration in calculating the interference field. The reflection
system thus consists of two arrays in each of which the central doublet
is omitted. For this case, then, only one chart (similar to that of
fig. 3(a)) is used. The same conclusion applies whenever a semispan
reflection model is tested with a tunnel wall as the reflection plane.
As a corollary, it follows that, if a tunnel is used to test only
symuetrical, unyawed, full—span models, only one contour chart need be
prepared, and the chart would represent the field of a b by h (instead
of a .2b by h) array. This conclusion can be readily verified by
examining figure E(g) which represents a closed tunnel containing a
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full—span symmetrical model and which is identical with figure 2(f) except
that the reflection plane and all its images are omitted.

Basic formulas and summation procedures for calculating contour charts.—
The potential of a unit doublet at the origin with its axis vertical is

: Z
hn(;2;+ ye + z2)3/2

The potential of a doublet line extending along the x—exis from the origin
to infinity is then :

L]
|

= % 2.4z
ﬁj; [('x - x')2 4+ y2 4+ z2]3[2

_l___Z__<1+ ¥
b y2 + 2° \[x2 + 32 + z°

The corresponding upwash velocity is

3 1 | y2 — 22 5 x[1y2 + 2z2) (x2 + y2 - 222) — 2x2z2J (1)

T T <y2 + z2>2 <y2 . Zz)e(xz o Z2)3/2

For any particular array of unit doublets, the upwash velocity at a
point (the contour value at that point on the contour chart) is the sum
of the values given by this formula for a geries of values of y differing
by 2b and a series of values of z differing by h, with appropriate
gigns according to the type of array. Such a double series usually con—
verges rather slowly, however, and, in general, the practicability of the
gummation depends on the use of certain approximation methods for suming
the fields of all but an inner group of doublets surrounding the origin.
These approximation methods, which are very similar to those used 1n the
two—dimensional studies of reference 6, are reviewed in the following
paragraphs.

The field of a doublet line 1is approximately the same as the field
of & horseshoe vortex of the same moment, provided the distance from the
doublet 1line to the point where the field is being considered 1s suf—
ficiently large relative to +he span of the horseshoe vortex. Thus, in
computing the field near ¥y = 0, a row of equal doublets at, for instance,

y = 4b, 6D, B8, .« = NEy DO replaced by a row of horseshoe vortices of
gpan 2b having their trailing vortices at y = 3b and 5b, 5b and Tb,
™ and 9b, .. . « 10 this representation, all the trailing vortices except

the innermost one cancel in pairs, so that the infinite row of doublets is
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equivalent to an L—vortex of which the trailing portion is at y = 3b
and of which the bound portion extends along the y—axis from 3b to
infinity. The field of this infinite IL—vortex is easily calculated by
the Biot—Savart law.

Tor a horizontal row of doublets lying a reasonable distance above
the origin, all may be replaced by horgeshoe vortices of span 2b, 1D,
which case all the trailing vortices cancel in pairs and only the bound
vortex extending from —% {o +® remains. Its field is merely that of
a two—dimensional vortex. Ga

By means of the approximate representations Jjust described, a
rectangular array of doublets in which the alternate rows have plus and
minus signs can be assumed approximamély equivalent to an inner group of
doublets around the origin (those that are too close to be adequately
replaced by horseshoe vortices) and an outer arrangement of IL~vortices
and two—dimensional bound vortices (r1g. 6(a)). Because of the alter—
nating signs, the upwash velocity at any point due to the two—dimensional
bound vortices may be formulated as the sum of the terms of an alternating
geries, which can be readily evaluated. ‘

For a rectangular array of doublets in which all have the same sign, .
a different replacement system ig more convenient. Instead of being
extended horizontally into a horseshoe vortex, the doublet is extended
vertically into a source line and a sink line, a distance h apart.
The source lines and sink lines in any column cancel each other in

pairs and only the source or gink lines, at a distance % above or below

the inner group of doublets, remain. This equivalent representation for
a rectangular array in which all doublets have the same gign is shown in

figure 6(b).

It may be noted that the previously mentioned L—vortices are actually
horseshoe vortices of which the second trailing vortex is at y =o and
that similer tralling vortices at y = e are agsociated with the infinite
bound vortices. Similarly, where the source lines and sink lines in the
columns cancel each other in palrs, a row of sink lines remain at 2z = +®
and a row of source lines at 2z = —oo The trailing vortices at y = e
require no special consideration because their alternating gigns would,
in any event, result 1n zero net effect in the region of the origin,. The
gink and source lines, however, would be expected to result in a uniform
upwash throughout the field, provided the extent of the rows of gource
and sink lines is of a higher order of infinity than 1s thelr distance
from the origin. For the open tunnel (fig. 2(b)), whether this uniform
vertical velocity is included or not is immaterial, since the two arrays
have opposite signs and the uniform upwash would thereby be eliminated 1n
any case. The question gtill remains, however, for the tunnel of
rigure 2(c), where the two arrays have the same sign. Actually, &
discussion of the relative orders of the two infinities is not necessary
or desirable inasmuch as a gimple physical criterion is available for
guch cases, namely, that the total induced upwash should approacn zero
at a large distance upstream from the wing. Since the field indicated
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in figure 6(b) already satisfies this upstream boundary condition, the *
uniform upwash that would result from the source and sink lines at
infinity should clearly not be included.

Remarks on preparation of charts and scale factors.— In the
calculations for the charts, 1t is convenient to consider the tunnel
width as unity and to assume unit doublets in the array (that is, to
use equation (1) for the field of each doublet). The half-width of
the charts need never exceed 1.5 tunnel widths, as is obvious from
figure 4. An example of a complete chart, used in estimating corrections
for the Langley full—scale tunnel. (idealized to a 60— by 30—foot rec—
tangular tunnel), is shown in figure 7(&). The tunnel was considered as
a 1 unit by 1/2 unit rectangle, so that the tunnel area D was 1/2
and the doublet images formed a»2_by‘1/2 array. The chart half-wldth
is considerably less than 1.5 tunnel widths because results for this
case showed that the outer contour values, when added to those of
figure 5, were insignificant. In figure T(b) is shown a chart for a
clogsed 3— by T7.5—foot rectangular tunnel. The chart was computed for
a 2 by 2.5 array of unit doublets corresponding to a tunnel area D
of 2.5. Figure T(c) shows a chart similarly developed for 7— by 10—foot
rectangular tunnels.

The chart of figure 5 for the single unit doublet, as computed
from equation (1) with z = O, was plotted with the unit distance
indicated on the coordinate axes. In keeping with the preceding
discussion, the chart half-—width is 1.5 units.

The scale factor for the eventual application of the charts is
developed as follows:

The 1ift AL assoclated with a horseshoe vortex of strength T
and span As (actual wing dimensions) is given by

2
AL cpASg%—

from which

TAs = cygs.

which is the equivalent doublet strength of a segment of wing area AS
having a mean 1ift coefficient c¢j;. The chart contours give the upwash
velocity w for a doublet of unit strength in a tunnel of cross—
gsectional area D. For the case of a doublet of strength I'As in a
tunnel of area C,

w = Chart reading X 'As X g
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or, with I'’As replaced by chSV/2, the upwash angle in radians is

¥ : c7ASD
i Chart reading X >0
or in degrees,
28 » 6C zASD

Chart reading X gt

If the suggested convention — that the tunnel width be taken as unity
in computing the charts — is followed, then the factor D/C 1is
merely l/b2 ‘and the expression for the upwash angle in degrees is

' 28.6c3AS 343:
Chart reading X ————— T
b3
Use of charts in computation of tunnel interference flow.— Agsume
that corrections are desired for a closed rectangular tunnel, for which
a chart of the type shown in figure 7 (that is, for an infinite arrsy of
doublets with the center doublet omitted) has been prepared. This chart

is designated chart A. The chart of figure 5, for a single doublet, is
designated chart B. The procedure may then be outlined as follows:

(1) Sketch the complete wing to the scale of the charts. Show the
sides of the tunnel and the nearest images of the semispans (fig. 8).

(2) Assume the 1ift to be concentrated at, say, two points on each
semigpan, and estimate the 1ift at each point in terms of c;AS. The
sum of the four values of cj;AS must equal C7S for the complete wing.
Also, if rolling moments are being considered, the rolling—moment
coefficient of the approximate representation should equal the rolling—
moment coefficient of the wing. Indicate on the sketch the four points
b, ¢, and & and their nearest images a', b', c', and d'. Also,
locate on the sketch the points at which the tunnel—induced angle is
desired, say a, B, and 7. In general, where only a few points are
used, greatest accuracy is achieved by assuming the 1lift (in the case of

an unflapped wing) to be concentrated along the 1 _chord line and
determining the upwash angles along the %u—chord line, as indicated

in figure 8. (The drag correction, however, is probably more correctly
determined from the upwash angles at the %-—chord line where the 1lift is
concentrated.)

(3) Place the origin of chart A at point a and read the chart
contours at a, B, and 7. Repeat for points b, ¢, and d. Then place
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the origin of chart A at point a' and read the chart contours at
a, B, and 7. Repeat for points b', c¢c', and d'. Finally, place the
origin of chart B at point a' and read the chart at «, B, and 7.
Repeat for points b', c¢', and 4'. ‘

(4) Finally, for the upwash angle at, say, point a, find the
algebraic sum of the three chart readings (for example, (a,a)
and (a',a) from chart A and (a',a) from chart B) for each of the
four points a, b, ¢, and d. Multiply each of these four sums by the
value of g§5§CpAS for the wing segment under consideration
(a, b, c, or ) and add. The total 1§ the tunnel—induced upwash angle,
in degrees, at point a. Proceed similarly for points B and 7.

When the vertical symmetry plane of the tunnel is also the vertical
symmetry plane of the wing (in general, for zero yaw and zero aileron
deflection), the work can be somewhat reduced. Only two load points a
and b on the wing and their two reflections a' and b' need be used,
although the chart readings must. still be obtained at the two symmetri—
cally located points a and 7 on both sides of the wing. The net
induced angle at a or 7 1s obtained by adding the results for «
and 7; the net induced angle at P 1s obtained by doubling the result
for- B,

Nonrectangular Tunnels

For a circular or other nonrectangular tunnel, the problem cannot
be reduced to that of calculating a single chart. A series of contour
charts, giving the tunnel—induced upwash in the horizontal center plane
of the tunnel, must be constructed for a series of spanwise locations
of the doublet in the tunnel. Even so, only a single parameter — the
spanwise location of the doublet — is involved, since variations in
longitudinal location of the 1ifting element (such as those for the
different 1lifting elements along a swept wing) are readily taken into
account by longitudinal shift of the contour chart. From a study of
reference 2 1t appears reasonably certain not only that the calculations
herein proposed would have been easier than the calculations therein
indicated but also that the eventual application of the results to wings
of irregular load distributions would also have been easier. The
procedure indicated in reference T seems to be of this type.

With regard to studies similar to those of reference 2, it may be
of value to point out that, at least theoretically, a serles of calcu—
lations for any one sweep angle should suffice for computing the tunnel
effect for any other sweep angle. Figure 9(a) shows, for example, how
the loading on a 60° gwept wing may be approximated by a single horseshoe
vortex and two palrs of unswept horseshoe vortices, where the inner
vortex of each pair has the same strength as the superimposed outer
vortex but has opposite rotation. Figure 9(b) shows, similarly, how
a palr of horseshoe vortices and a single horseshoe vortex, all
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swept 45°, might be used to approximate the loading on a 60° swept wing
with sufficient accuracy to calculate the tunnel interference velocities.

CONCLUDING REMARKS

For a lifting wing of arbitrary loading and plan form, situated in
the horizontal center plane of a rectangular tunnel, the tunnel—induced
upwash velocdties in the same plane can be readily calculated with the
aid of two charts. One is given in the present paper; the other must be
computed for each tunnel. Such simpllfication is not possible for
nonrectangular tunnels. In any case, however, computations for a series
of wings of various spans and various sweep angles are unnecessary. Thus,
computations for several spanwise positions of the lifting element or
computations for a set of unswept wings of various spans should provide
a basis for computing tunnel—induced upwash velocities for any wing in
the horizontal center plane of the tunnel.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., July 27, 1948
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o DI B B iy B S,

Figure 1.- Field of a lifting wing represented as the field of four doublet lines
extending downstream from four points where the lift is assumed to be
concentrated. :
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(a) Closed tunnel.

Figure 2.- Image configurations for doublet lines in rectangular tunnels.
Doublet in tunnel is indicated by double circle; nearest lateral image is
indicated by double square.
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(b) Open tunnel.
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and bottom.

Continued.

Figure 2.-
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(e) Tunnel closed at bottom, open on
three sides.

Continued.

Figure 2.-
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(f) Closed tunnel containing a sémispan
reflection model.
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(g) Closed tunnel containing a full-span

symmetrical model.

Figure 2.- Concluded.
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=

tunnei walls LA

(a) Chart representing field of doubly infinite
array of unit doublets with center doublet
omitted; origin of chart is placed on point a.

-—————— tunnel walls -

(b) Chart representing field of complete doubly infinite
array of unit doublets; origin of chart is placed
on nearest image a’.

Figure 3.- Tunnel interference velocity at point @, corresponding to lift
concentration at point a, determined by two contour charts.
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tunnel walls—

(a) Same as the chart of figure 3(a);
origin at a'.

W
£)
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tunnel walls —

(b) Chart representing field of a single
unit doublet.

Figure 4.- Two contour charts, the sum of which equals the chart of
figure 3(b).
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Flow direction
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Figure 5.- Chart B. Contours of upwash velocity due to a unit positive semi-infinite doublet line.
The origin O is the head of the doublet line,
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(a) Array having alternate rows of plus and
minus doublets.

o g o = g
+ + +
+ +
+ + +
L e Fe)

(5) Array having only plus doublets.

Figure 6.- Approximate representations of the two types of doubly infinite,
rectangular arrays of doublets with center doublet omitted. °



Flow direction

9

1.0

(a) Chart used in deriving corrections for the Langley full-scale tunnel; calculated for a 2 (horizontal) by
0.5 (vertical) array, with all doublets positive.

-

Figure 7.- Examples of chart A. Contours of upwash velocity in the horizontal center plane due to a
doubly infinite array of unit semi-infinite doublet lines with the center doublet line omitted. The
origin O is the head of the center doublet line.
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(b) Chart for Langley two-dimensional tunnels (3 by 7.5 ft); calculated for a 2 (horizontal) oy 2.5 (vertical)
array. The doublets alternate in sign vertically, with those in the horizontal center plane positive.

Figure 7.- Continued.
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COMPUTATION OF TUNNEL INTERFERENCE FOR
SEMISPAN MODELS IN THE TDT

For semispan tests in the TDT the configuration is essentially that
of a full-spen symmetrical model in a 6- by 7.5 ft, tunnel, To each
peir of concentrations of 1ift on the model (represented by a doublet)
there corresponds two infinite sets of images, each set in an exact
6= by 7.5 ft. rectangular array. In the figure, one set is indicated
by circles, the other set by squares,

The tunnel interference is the
‘ecombined field of the two infinite

arrays, with the central doublet of - (8 ©l@ © , 8 © '@ O
each array omitted.
| { 2 S
velocity in the horizontal plane of . . B olag e'a o8 &
|

the central doublet induced by the
corresponding arrey of imege doublets.
It was calculated for a 1 x 1.25 array
of semiinfinite unit doublet lines,
The origin O of the chart is at the
head of the doublet line and represents :
the location of the bound vortex,. where —— — e
the 1ift is assumed to be concentrated, | bl -
Since a vortex of strength /7 and span . | & elg ela o
| |
| |

l
P
‘Th‘e chart givés the upwash “ —;
|
|
|
|

ab represents a 1lift given by

fcab! ¢,V , this unit doublet (unit

value of /’ab) represents a unit value of
jesl clV, where a8 is the area cab. The chart values can thus be con=- -
2

gidered as w £
or —-&—1 . WC
Oo 5 V S Cz
where

w induced upwash velocity
v tunnel velocity

c area of tunnel crosgs section (45)

as area of portion of wing considered, sq.ft.

<y mean 1lift coefficient of portion of wing considered

To get w, multiply the chart readings by 0,625 (esch; or, substituting
c

v
C=45 and multiplying by 57.3, the induced upwash angle in degrees, is
the chart reading multiplied by 0.80 (aS)c,. :
In order to determine the induced upwash on the model proceed as follows:
(1) Sketch the complete model (both semispans) to the scale of the

chart (10 em=3 ft.).



“l e

(2) Assume 1ift to be concentrated at, say, 3 points on each semi~-
span, and evaluate the amount of 1ift at each point in terms of (aS)e,.

(3) Place point O of the chart on each of the six points and read
the chart values along the right-hand span. Multiply each set of reedings
by the corresponding value of (AS)cz.

(4) 4da the six sets of adjusted chart readings, and multiply by 0.80.

&7

S. Katzoff
-Id. Eo H&nmh
4=21=47

G
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Figure 8.- Sketch used with charts A and B for determining tunnel-induced
upwash angles. Sketch shows points a, b, ¢, and d where lift is assumed
to be concentrated, the nearest images a', b', ¢!, and d! , and points a,

b
and where the tunnel-induced upwash angles are to be determined,
B 7.
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A

fa X

(a) Approximation by horseshoe vortices
of 0° sweep.

(b) Approximation by horseshoe vortices of
: 450 sweep.

Figure 9.- Approximation of the loading on a 60° sweptback wing by means
of horseshoe vortices of different sweep.
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Abstract

The tunnel—induced upwash for a wing of any plan
form and load distribution in a rectangular tunnel
may be found with the aid of only two charts. One
is given in the present paper. The second must be
computed for each tunnel. The second chart is given
for an open tunnel of 2:1 width-height ratio, a closed
tunnel of 2:5 width-height ratio, and a closed tunnel
of 10:7 width-height ratio.

Abstract

The tunnel—induced upwash for a wing of any plan
form and load distribution in a rectangular tunnel
may be found with the aid of only two charts. One
is given in the present paper. The second must be
computed for each tunnel. The second chart is given
for an open tunnel of 2:1 width-height ratio, a closed
tunnel of 2:5 width-height ratio, and a closed tunnel
of 10.7 width—height ratio.
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