Unitary and Continuous-Flow Hypersonic Tunnels

From NasaCRgis

(Redirected from 1251)
Jump to: navigation, search
Facility 1251
Building 1251

Center: Langley Research Center
Location: Hampton, Virginia
Year Built: 1952
Historic Eligibility: National Register Eligible
Important Tests: Military supersonic aircraft, early Space Shuttle development


Multimedia.jpg Back To Multimedia

Contents

[top] History

The Unitary Plan 4X4 Foot Supersonic Tunnel, approved under the Unitary Plan Act of 1949 and operational since 1955, has two supersonic test sections that accommodate speeds from 1,000 to 3,000 miles per hour (Mach 1.5 to Mach 4.6). Developmental tests of almost every supersonic military aircraft and NASA spacecraft have been made in this tunnel. Typical testing at the facility include force and moment studies, discrete and global surface pressure measurements, and the application of various flow visualization techniques. Additionally, tests involving jet effects, dynamic stability, model deformation, global surface and off-body measurements and heat transfer have been conduced. Extensive experimental work on Space Shuttle was also conducted here, plus development of advanced concepts in supersonic civil and military aircraft. This facility has made critical contributions to the development, assessment, and optimization of advanced aerospace vehicle concepts through its decades of service.

The Mach 6 and 10 Tunnels are a part of the Langley Aerothermodynamics Laboratory. The Mach 10 Tunnel, also known as the Continuous-Flow Hypersonic Tunnel, was completed in 1957. The Hypersonic Flow Apparatus, or Mach 6 Tunnel, was completed two years later. In 1973, the Hypersonic Flow Apparatus housed in building 583 was dismantled and moved to building 1251.

The Mach 10 Tunnel has a 31-in test section with dry air as its medium. Dry air is also used as the test medium for the 15-in test section in the Mach 6 Tunnel. Today, tests ranging from heat-transfer studies to aerodynamics are completed in the tunnels.

The Continuous-Flow Hypersonic Tunnel was used to study problems spacecraft encounter as they leave or enter the atmosphere at very high speeds. The tunnel's equipment processes air to the extremely high pressures and temperatures needed to accelerate air to ten times the speed of sound. The large vacuum spheres were used to start the air flow. The facility contributed to the development of space programs from Apollo to the Space Shuttle.

In reviewing real property records and engineering drawing files, it is not clear when the division between 1251 and 1251A occurred. It appears from the drawing files that 1251A was used to denote the new test apparatus that was installed in existing rooms now known as 1251A. It is clear that these rooms were part of the original building (see proposed floor plan and 2012 floor plan in photos below).

[top] Photos

[top] Shipyards Construction

This collection of photos was provided by the Northrop Grumman Shipbuilding-Newport News


[top] Facility Photos

[top] Mach 10 Tunnel


[top] Tests and Models

[top] Demolition

NASA made the decision to lease the Unitary Tunnel in preparation for future demolition. The following images were taken in October 2012 in preparation for the eventual demolition.

[top] Films

1958: Schlieren Movies of the 8-inch Diameter Rigid Parachute Model of the Cook Research Laboratory

1958: Documentary Film Report on the Testing of a 1/12 Scale Model of Lockheed Polaris Missile

1959: Drogue Parachute Used for Stabilization of the Project Mercury Capsule

1959: Project Mercury Capsule Shingle Tests

1959: Flow Studies of Decelerators at Supersonic Speeds

1959; Goodyear Aircraft Corporation Balloon

Schlieren Run of the X-15 in Unitary Tunnel

1960: Schlieren Movies of the Flow about Reefed Parachute Model

1960: Tests of Vortex Ring Parachute at Supersonic Speed

1960: Schlieren Movies of Decelerators at Supersonic Speeds

1960: Dyna-Soar Panel Flutter Tests

1961: Boeing Dyna-Soar Panel Flutter Tests

1961; Aerodynamic Characteristics of Parachutes

1961: Investigations of a Balloon as a Towed Decelerator

1961: Paraglider Models at Supersonic Speeds

1962: Tests of a 30° Conical Ribbon Parachute and a Rotofoil Parachute

1962: Tests of Cook Technology Center Parachutes

1965: Project Fire

HL-10 Model Landing Tests

[top] Documents

[top] General

Building Diagram

Unitary Tunnel Diagram

1961 Investigation of the Static Stability Characteristics of Two Stages of a Three-Stage Missile at a Mach Number of 4.0. TN D-651.

1965 Brief Description of Langley's Unitary Plan Wind Tunnel (TM X-1130)

1966 Unitary Plan Wind Tunnel Testing Characteristics and Cost

1966 Facility Resume

1974 Quick Facts on the Unitary Plan Wind Tunnel

1978 Floor Plan

1986 Modifications to Upgrade Hypersonic Aerothermal Complex

1986 Special Test Capability of the Unitary Plan Wind Tunnel

1989 Boundary-Layer Transition Detection Measurements in the Unitary Plan Wind Tunnel

1964 Mach 10 Tunnel Description, Uses, and Cost

1965 Brief Description of Langley's Continuous-Flow Hypersonic Tunnel (TM X-1130)

1966 Technical Facilities Resume for Mach 6 Tunnel

1966 Technical Facilities Resume for Mach 10 Tunnel

1974 Quick Facts on Mach 6 Tunnel

1974 Quick Facts on the Mach 10 Tunnel

1990 Facility Resume


[top] Technical Reports

Effect of Hypersonic Research Engine Installation on Aerodynamic Characteristics of 0.0667-scale Model of X-15 A-2 Airplane at Mach Numbers from 1.75 to 4.63. Ernald B. Graves. 1969. TM X-1840.

Experimental pressure distributions for a family of blunt bodies at Mach numbers from 2.49 to 4.63 and angles of attack from 0 deg to 15 deg. Robert L. Stallings, Jr. and Dorothy T. Howell. 1969. TN D-5392.

Drag reduction due to gas injection through various discrete slots on a three-dimensional wing at Mach 2.01. Russel B. Sorrells III, K. R. Czarnecki, and Lorraine F. Satchell. 1969 TN D-5307.

Effects of additional revisions on the aerodynamic characteristics of a target drone vehicle at Mach numbers from 1.70 to 4.63. COORD no. AF-AM-827. A. B. Blair, Jr. and Dorothy H. Tudor. 1970. TM X-1961.

Sonic-boom characteristics in the extreme near field of a complex airplane model at mach numbers of 1.5, 1.8, and 2.5. Odell A. Morris, Milton Lamb, Harry W. Carlson. 1970. TN D-5755.

Effects of nose bluntness on aerodynamic characteristics of cruciform-finned missile configuration at mach 1.50 to 2.86. Lloyd S. Jernell. 1970. TM X-2031.

Aerodynamic interference effects on half-cone bodies with thin wings at mach 10.03. James C. Townsend. 1970. TN D-5898.

Experimental wake survey behind a 120 deg-included-angle cone at angles of attack of 0 deg and 5 deg, mach numbers from 1.60 to 3.95, and longitudinal stations varying from 1.0 to 8.39 body diameters. Clarence A. Brown, Jr., James F. Campbell, Dorothy H. Tudor. 1971. TM X-2139.

Theoretical pressure distributions over arbitrarily shaped periodic waves in subsonic compressible flow and comparison with experiment. K. R. Czarnecki, Mary W. Jackson. 1970. TN D-5984.

Boundary-layer transition study of several pointed bodies of revolution at supersonic speeds. William A. Cassels, James F. Campbell. 1970. TN D-6063.

Supersonic aerodynamic characteristics of a rocket-vehicle model with low-aspect-ratio wing and tail surfaces. Ernald B. Graves. 1971. TM X-2159.

Roll-control effectiveness of several spoiler configurations on an airplane model with wing sweep of 55 deg and 75 deg at supersonic mach numbers. Clyde Hayes. 1971. TM X-2165.

A wind-tunnel investigation of sonic-boom pressure distributions of bodies of revolution at mach 2.96, 3.83, and 4.63. Barrett L. Shrout, Robert J. Mack, Samuel M. Dollyhigh. 1971. TN D-6195.

Wind-tunnel investigation of sonic-boom characteristics of two simple wing models at mach numbers from 2.3 to 4.63. David S. Miller, Odell A. Morris, Harry W. Carlson. 1971. TN D-6201.

Aerodynamic characteristics at mach numbers from 1.60 to 2.16 of a blunt-nose missile model having a triangular cross section and fixed triform fins. William J. Monta. 1971. TM X-2340.

Aerodynamic characteristics of wing-body configurations of hypersonic cruise aircraft at mach 2.30 to 4.63 Lloyd S. Jernell. 1971. TM X-2287.

Comparisons of theoretical and experimental pressure distributions over a wing-body model at high supersonic speeds. Lloyd S. Jernell. 1971. TN D-6480.

Longitudinal Aerodynamic characteristics at mach 1.50 to 4.63 of a missile model employing various canards and a trailing-edge flap control. Charles D. Trescot, Jr. 1971. TM X-2367.

A method for calculating the aerodynamic loading on wing-body combinations at small angles of attack in supersonic flow. Charlie M. Jackson, Jr., Wallace C. Sawyer. 1971. TN D-6441.

An improved method for calculating supersonic pressure fields about bodies of revolution. Robert J. Mack. 1971. TN D-6508.

Experimental wake survey behind Viking '75 entry vehicle at angles of attack of 0 deg and 5 deg, mach numbers from 1.60 to 3.95, and longitudinal stations from 1.0 to 8.39 body diameters. Clarence A. Brown, Jr., James F. Campbell. Dorothy H. Tudor. 1971. TM X-2312.

Experimental wake survey behind a 140 deg-included-angle cone at angles of attack of 0 deg and 5 deg, mach numbers from 1.60 to 3.95, and longitudinal stations varying from 1.0 to 8.39 body diameters. Clarence A. Brown, Jr., James F. Campbell. 1971. TM X-2409.

Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated. Ernald B. Graves. 1972. TM X-2531.

Effect of nose shape and tail length on supersonic stability characterisitics of a projectile. Wallace C. Sawyer, Ida K. Collins. 1973. TM X-2381.

Drag characteristics of circular cylinders in a laminar boundary layer at supersonic free-stream velocities. Robert L. Stallings, Jr., Milton Lamb, Dorothy T. Howell. 1973. TN D-7369.

Comparisons of two-dimensional cshock-expansion theory with experimental aerodynamic data for delta-planform wings at high supersonic speeds. Lloyd S. Jernell. 1974. TN D-7583.

Effects of reynolds number and model support on the supersonic aerodynamic characterisitics of a 140 deg-included-angle cone. Charles D. Trescot, Jr., Clarence A. Brown, Jr., Dorothy T. Howell. 1974. TM X-3019.

Stability and control characteristics at Mach numbers from 0.20 to 4.63 of a cruciform air-to-air missile with triangular canard controls and a trapezoidal wing. Ernald B. Graves, Roger H. Fournier. 1974. TM X-3070.

Stability and control characteristics of a monoplane missile with large delta wings and various tail controls at Mach 1.90 to 2.86. Lloyd S. Jernell. 1974. TM X-71984.

Sweep effect on the drag of rows of perpendicular circular cylinders in a laminar boundary layer at supersonic free-stream velocities. Milton Lamb, Robert L. Stallings, Jr. 1972. TN D-7812.

Numerical methods for the design and analysis of wings at supersonic speeds. Harry W. Calson, David S. Miller. 1974. TN D-7712.

Minimization of sonic-boom parameters in real and isothermal atmospheres. Christine M. Darden. 1975. TN D-7842.

A generalized theory for the design of contraction cones and other low speed ducts. Raymond L. Barger, John T. Bowen. 1972. TN D-6962.

Evaluation of compressible-flow Preston tube calibrations. Jerry M. Allen. 1973. TN D-7190.

Application of sonic-boom minimization concepts in supersonic transport design. Harry W. Carlson, Raymond L. Barger, Robert J. Mack. 1973. TN D-7218.

On the use of thick-airfoil theory to design airfoil families in which thickness and lift are varied independently. Raymond L. Barger. TN D-7579.

Effects of Mach number on pitot-probe displacement in a turbulent boundary layer. Jerry M. Allen. TN D-7466.

Subsonic and supersonic longitudinal stability and control characteristics of an aft tail fighter configuration with cambered and uncambered wings and uncambered fuselage. Samuel M. Dollyhigh. TM X-3078.

A streamline curvature method for design of supercritical and subcritical airfoils. Raymond L. Barger, Cuyler W. Brooks, Jr. TN D-7770.

A modified Theodorsen epsilon-function airfoil design procedure. Raymond L. Barger. TN D-7741.

Procedures for the design of low-pitching-moment airfoils. Raymond L. Barger. TN D-7982.

Flight transition data for angles of attack at Mach 22 with correlations of the data. Charles B. Johnson. Christine M. Darden. TM X-3235.

Investigation of the static lift capability of a low-aspect-ratio wing operating in a powered ground-effect mode. Jarrett K. Huffman. Charlie M. Jackson, Jr. TM X-3031.

Aerodynamic Analyses Requiring Advanced Computers, part 2. Raymond L. Barger. Cuyler W. Brooks, Jr. SP-347.

Second-order small-disturbance solutions for hypersonic flow over power-law bodies. James C. Townsend. TN D-7973.

Aerodynamic characteristics of a hypersonic research airplane concept having a 70 degree swept double delta wing at Mach numbers from 1.50 to 2.86. Jim A. Penland. Roger H. Fournier. Don C. Marcum, Jr. TN D-8065.

Adaptation of the Theodorsen theory to the representation of an airfoil as a combination of a lifting line and a thickness distribution. Raymond L. Barger. TN D-8117.

A numerical technique for analysis of wave drag at lifting conditions. Roy V. Harris, Jr. TN D-3586.

Experimental flow properties in the wake of a 120 deg cone at Mach number 2.20. James F. Campbell. Josephine W. Grow. TN D-5365.

Supersonic Aerodynamic Characteristics and Shock Standoff Distances for Large-Angle Cones with and Without Cylindrical Afterbodies. James F. Campbell. TN D-5334.

Boundary-layer velocity profiles downstream of three-dimensional transition trips on a flat plate at Mach 3 and 4. John B. Peterson, Jr. TN D-5523.

Supersonic lifting capabilities of large-angle cones. James F. Campbell. Dorothy T. Howell. TN D-5499.

Charts for interpolation of local skin friction from experimental turbulent velocity profiles. Jerry M. Allen. Dorothy H. Tudor. SP-3048.

A numerical method for evaluation and utilization of supersonic nacelle-wing interference. Robert J. Mack. TN D-5057.

Antenna effects on the aerodynamic characteristics of a 0.410-scale model of the Cajun rocket at Mach numbers from 2.30 to 4.63. Lloyd S. Jernell. TM X-1771.

Static stability, control, and fin load characteristics of a model of an Apache vehicle with a coast-phase-control package. William J. Monta. TM X-1942.

Experimental heat-transfer distributions on a blunt lifting body at Mach 3.71. Robert J. Stallings Jr. Robert L. Wright. Ida K. Collins. TN D-5616.

A study of the application of heat or force fields to the sonic-boom-minimization problem. David S. Miller. Harry W. Carlson. TN D-5582.

Aeronautical characteristics of an oblate spheroid and a sphere at Mach numbers from 1.70 to 10.49. Lloyd S. Jernell. TN D-5600.

A method for determining surface pressures on blunt bodies of revolution at small angles of attack in supersonic flow. Charlie M. Jackson, Jr. Wallace C. Sawyer. Rudeen S. Smith. TN D-4865.

Experimental Preston tube and law-of-the-wall study of turbulent skin friction on axisymmetric bodies at supersonic speeds. Jerry M. Allen. TN D-5660.

Pressure distributions on 140 deg, 160 deg, and 180 deg cones at Mach numbers from 2.30 to 4.63 and angles of attack from 0 deg to 20 deg. James F. Campbell. Dorothy H. Tudor. TN D-5204.

Experimental pressure distributions on a 120 deg cone at Mach numbers from 2.96 to 4.63 and angles of attack from 0 deg to 20 deg. Robert J. Stallings, Jr. Dorothy H. Tudor. TN D-5054.

Flow-field measurements downstream of two protuberances on a flat plate submerged in a turbulent boundary layer. Lana M. Couch. TN D-5297.

Experimental pressure distributions on a blunt lifting-entry body at Mach 3.71. W. Douglas Morris. Lana M. Couch. TN D-4494.

Effect of speed brakes on the supersonic aerodynamic characteristics of a variable sweep tactical fighter model at Mach numbers from 1.60 to 2.50. Celia S. Richardson. TN D-4773.

Aerodynamic characteristics of two blunt, half-cone wedge entry configurations at Mach numbers from 2.30 to 4.63. Gerald V. Foster. TM X-1621.

Supersonic aerodynamics of large-angle cones. James F. Campbell. Dorothy T. Howell. TN D-4719.

Drag due to two-dimensional surface roughness in a turbulent boundary layer at Mach 3 with and without heat transfer. William J. Monta. K. R. Czarnecki. William D. Deveikis. TN D-4746.

Effects of nose shape and fin geometry on static stability of a high-fineness-ratio sounding rocket. Dennis E. Fuller. TM X-1661.

Aerodynamic characteristics of bodies of revolution at Mach numbers from 1.50 to 2.86 and angles of attack to 180 deg. Lloyd S. Jernell. TM X-1658.

Effects of variations in nose and windshield geometry on supersonic aerodynamic characteristics of a variable-sweep tactical fighter model. Celia S. Richardson. TM X-1664.

Aerodynamic characteristics of a parasol-wing-body combination utilizing favorable lift interference at Mach numbers from 3.00 to 4.63. Odell A. Morris. Robert J. Mack. TN D-4855.

Personal tools
Navigation