LFC AIRFOIL DEVELOPMENT

Dennis O. Allison

LFC/HLFC Peer Review

March 23–24, 1989
LFC AIRFOIL DESIGN CONSIDERATIONS

- Large chord (7 foot) model spans the tunnel
- Nontapered, swept about 25 degrees and trailing-edge flaps
- Interchangable upper surface porous/slotted suction panels
- Lower surface slotted suction, no leading-edge suction slots
- Leading-edge shaping to reduce boundary layer instabilities
- Shockless with performance similar to turbulent airfoils
- Upper surface maximum local Mach number < 1.12
- Supersonic bubble should not impact opposite tunnel wall
LFC AIRFOIL
FOR A SWEPT WING

AIRFOIL DEVELOPMENT

- TRANSONIC DESIGN
- TRANSONIC ANALYSIS
 DESIGN POINT
 OFF DESIGN
 TURBULENT

SUCTION REQUIREMENTS

- BOUNDARY LAYER ANALYSIS
- STABILITY ANALYSIS
 TOLLMIEN–SCHLICHTING
 CROSS–FLOW
 TAYLOR–GOERTLER
EVOLUTION OF LFC AIRFOIL TO BE TESTED
IN AMES' 12 FOOT PRESSURE WIND TUNNEL

$M_\infty = 0.756$
$C_L = 0.56$
$t/c = 13.1\%$
$M_{\text{max}} = 1.19$

$M_\infty = 0.720$
$C_L = 0.580$
$t/c = 13.4\%$
$M_{\text{max}} = 1.07$

$M_\infty = 0.73$
$C_L = 0.589$
$t/c = 12.6\%$
$M_{\text{max}} = 1.15$

$M_\infty = 0.725$
$C_L = 0.6$
$t/c = 12.8\%$
$M_{\text{max}} = 1.12$
VARIATION OF PRESSURE DISTRIBUTION WITH MACH NUMBER AT DESIGN LIFT COEFFICIENT ($C_L = 0.60$)

$M = 0.730$

$M = 0.735$

$M = 0.740$

$M = 0.750$
DESIGN OF AIRFOIL A

\[M_n = 0.730, \quad c_l = 0.60 \]
OFF DESIGN FOR AIRFOIL A

c_1 = 0.60

\[M_n = 0.60 \]

\[M_n = 0.70 \]

SUPERSONIC REGION

\[C_{p,\text{sonic}} \]

\[M_n = 0.73 \]

\[M_n = 0.75 \]
TURBULENT LIFT RECOVERY

AIRFOIL A, $M_n = 0.730$

INVISCID
$\alpha = 0.1^\circ$
$c_l = 0.60$

$R_c = 10 \times 10^6$
$\alpha = 0.1^\circ$
$c_l = 0.28$

$R_c = 10 \times 10^6$
$\alpha = 1.8^\circ$
$c_l = 0.60$

$R_c = 10 \times 10^6$
$\alpha = 0.1^\circ$, $\beta = 8.0^\circ$
$c_l = 0.60$
AIRFOIL REDESIGN

<table>
<thead>
<tr>
<th>Airfoil</th>
<th>t/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.131</td>
</tr>
<tr>
<td>A</td>
<td>.135</td>
</tr>
</tbody>
</table>
DRAG RISE AT $c_l = 0.60$

![Diagram showing the drag rise at $c_l = 0.60$. The graph plots $c_{d,w}$ against M_n. There are two curves, one solid and one dashed, representing different airfoils labeled B and A.](image-url)
EFFECT ON PRESSURE DISTRIBUTION

$c_l = 0.60$

$C_p, \text{ sonic}$

C_p

Airfoil	M
B | 0.755
A | 0.730
PRESSURE DISTRIBUTION REFINEMENT

\[M_n = 0.755, \quad c_l = 0.55 \]
SELECTION OF DESIGN CONDITION

\[C_p \]

- \(M_n = 0.755 \)
 - \(c_l = 0.55 \)
 - WIND TUNNEL MODEL DESIGN

- \(M_n = 0.758 \)
 - \(c_l = 0.58 \)
 - MAXIMUM SHOCKLESS DESIGN

- \(M_n = 0.760 \)
 - \(c_l = 0.60 \)
 - \(C_{p,\text{sonic}} \)

- \(M_n = 0.765 \)
 - \(c_l = 0.65 \)
 - SUPERSONIC REGIONS
CONCLUSION

- Long and torturous development of final airfoil geometry
- Final design condition similar to those of turbulent airfoils
- Design condition chosen so "bubble-off-the-wall" condition met
- Extensive off-design studies of supercritical behavior
- Use of trailing-edge flap for lift recovery demonstrated
APPROVAL FOR SCIENTIFIC AND TECHNICAL PRESENTATIONS AND PUBLICATIONS

ROUTING FORM FOR (Check one)
☑ Technical Talk (no written version)
☐ Meeting Presentation (with written version)
☐ Article (journal or other publication)

RTOP

SUBJECT CATEGORY
AERODYNAMICS

FOR APPROVAL OF (Check one)
☐ Abstract
☐ Draft
☐ Manuscript
☐ Revision

AUTHOR(S)
DENNIS D. ALLISON

EXTENSION
42871

MAIL STOP
294

BRANCH
TAB

DIVISION
AAD

MEETING PRESENTATION OR TALK
DATE
3-23-89

PLACE
NASA, LaRC

SPONSOR(S)
P.J. BABBITT

TITLE (of presentation or article)
LFC AIRFOIL DEVELOPMENT

NAME OF MEETING/JOURNAL/PUBLICATION
LFC/HLFC PEER REVIEW

ROUTING
INITIALS
DATE
1. Author

3. a. Division Chief:

2. Branch Head:

b. Division Chief:

3. Division Chief:

c. Division Chief:

4. 149A/RIO

ACTION REQUESTED OF RIO
☐ Prepare Transmittal Correspondence
☐ For Information Only

SUBMITTAL IS (see reverse)
☐ National
☐ International

DEADLINE FOR TRANSMITTAL

For International Meeting/Journal/Publication, is this information publicly available in the United States? ☐ YES ☐ NO

PERSON(S) TO RECEIVE TRANSMITTAL (if not the same as on call for papers or journal instructions) INCLUDE ADDRESS

PERSON PRESENTING TALK OR MEETING PAPER
DENNIS D. ALLISON

NAME OF TECHNICAL REVIEWER OR COMMITTEE CHAIRMAN

PREVIOUS APPROVALS
☐ Langley
☐ NASA Headquarters
☐ Sponsor

IS NEW TECHNOLOGY INVOLVED
☐ Yes
☐ No

ADDITIONAL COMMENTS