HIGH-SPEED TRANSPORT AIRCRAFT RESEARCH

HI STAR

- Unique, high-speed propulsion
- Designer fuels
- Long-life, thermal structures
- Tailored aerodynamics
- Flight management

Tu-144 Concorde

SR 71

HiSTAR OBJECTIVE:

To provide technology to enable the U.S. aerospace industry to lead in the development of long-range, high-speed transportation systems.
HISTAR - GUIDANCE, NAVIGATION AND CONTROL

OBJECTIVE

Develop criteria and methodology for optimized integration of crew/controls/aircraft/air traffic:

- Flight path management
- Advanced flight deck
- Active controls
- Avionics reliability, safety, maintainability (RSM), certification

PARTICIPANTS AND FACILITIES

PARTICIPANTS:
- LARc Flight Systems Directorate
- CALSPAN
- Airframe Companies

FACILITIES
- Advanced Concept Simulation
- Advanced Display Evaluation Cockpit
- Terminal-area simulation
- AIRLAB
- Contractor simulators

SCHEDULE AND FUNDING

<table>
<thead>
<tr>
<th>Efforts</th>
<th>FY89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight path management</td>
<td>450</td>
<td>800</td>
<td>1100</td>
<td>800</td>
<td>550</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>Advanced flight deck</td>
<td>200</td>
<td>550</td>
<td>1300</td>
<td>1300</td>
<td>1500</td>
<td>1000</td>
<td>950</td>
</tr>
<tr>
<td>ATC procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active controls</td>
<td>350</td>
<td>600</td>
<td>950</td>
<td>400</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avionics RSM and cert.</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>6500</td>
<td>6500</td>
<td>6500</td>
<td>5000</td>
</tr>
</tbody>
</table>
HISTAR – ATMOSPHERIC ENVIRONMENT

Objectives

- Define Flight Environment
 - Aerosol, O_3, and density climatologies
 - Turbulence and wave breaking
- Assess Environmental Impact
 - Effect of vehicle effluents
 - Other effects

Participants and Facilities

Participants:
- LaRC Atmospheric Sciences Division

Facilities:
- SAM II/SAGE II Satellites
- Ground-based and Airborne Lidar
- Computer Models of Atmosphere:
 - Photochemistry and dynamics
 - Constituent global data base

Schedule and Funding ($K)

<table>
<thead>
<tr>
<th>Effort</th>
<th>FY 88</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td></td>
<td></td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>
HiSTAR ACOUSTICS

Participants and Facilities

Participants:
- LaRC Acoustics Division
- LeRC

Facilities:
- Aircraft Noise Reduction Laboratory
- Jet Noise Laboratory
- Thermal Acoustic Fatigue Apparatus
- Contractor Boom Simulators

Objectives

- Understand mechanisms of noise generation
- Predict community/passenger response
- Predict and measure acoustic loads and their effects
- Assess noise reduction alternatives

Schedule and Funding, ($K)

<table>
<thead>
<tr>
<th>Effort</th>
<th>FY89</th>
<th>FY90</th>
<th>FY91</th>
<th>FY92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise source</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>Human acceptance</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Structural loads</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Combined loads, fatigue</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>
Attendees for HiSTAR Meeting
(High Speed Transport Aircraft Research)
Friday, February 13, 1987
Room 625
10:00a.m.- 1:00p.m.

Langley
- Charlie Jackson
- Samuel Dollyhigh
- Thomas Bales - MATERIALS

Ames
- Paul Kutler
- Thomas Galloway

Lewis
- Joseph Ziemianski
- Daniel Mikkelson
- William Strack - will do advocacy

HQ
- RP/Gary Hicks
- George Unger
- RP/John Facey
- RM/Samuel Venneri
- RJ/Goochey
- RP/P. Evanich

- Too much discipline research included, should be
 more system technology.
 - All code development & validation
 (tools but not objectives)
- Didn't have advocacy for enabling technologies
 - Show leverage for each

- Roadmap how it fits together
- Charts
- Lack: definitive milestones or none at all
 # 150 M/YR for first two years