The Supersonic Decision

The U.S. supersonic transport program is now in position to enter the important phase of prototype construction. With the selection of Boeing for the airframe and General Electric Co. for the engine, the U.S. program assumes a more clearly defined shape and becomes a firm competitor in the international market. It should be clear to the airlines of the world, particularly those who participated in the final design selection, that the U.S. program is indeed a sound technical effort that will press forward at the best possible pace to certification and airline service.

The Federal Aviation Agency, which made the final choice in this hotly contested design competition, deserves considerable praise for the swift and sure way it handled the selection process. It allowed the airlines full expression of their opinions in the evaluation and it met its avowed goal of choosing a final pair of contractors by the beginning of 1967. In this difficult task, the FAA benefited considerably from the prior Air Force development program and procurement experience of its current administrator, Gen. William F. McKee, and Brig. Gen. Jewell C. “Bill” Maxwell, who headed the agency’s supersonic transport program office. Bill Maxwell earned the respect of the design competitors and the customer airlines for the manner in which he directed this crucial program phase, combining firm technical integrity with flexibility and reasonable accommodation to a wide variety of conflicting interests. Special note should also be made of Mark Nichols, head of the Full-Scale Research Div. of NASA’s Langley Research Center, and his group for their work in wind tunnels and theoretical analysis. They helped both airframe competitors to refine their designs and also provided an impartial validation of their technical claims.

Design Refinements

It appears there will now be a slight, but necessary, hiatus between the prototype contractor selection and the official word to start construction. First and most important is the need for the executive branch of the government to present its position on supersonic transport development to the new Congress that convenes this week. The 90th Congress contains many new faces who are not familiar with the goals or progress of this program. There is also some residue opposition from the 89th Congress that must be countered before a formal request for prototype construction funds is sent to Capitol Hill.

Boeing, which went through a major design change in its proposal last summer, is still busy refining many details of its new configuration. It can use a few extra months to complete this job before it will really be ready to cut metal on the prototype. Despite the late-hour design change, Boeing received extremely strong support from the airlines, which have been riding to new crests of prosperity with fleets of Boeing subsonic jets. Boeing’s late decision to voice preference for the General Electric engine also played a key role in selecting the powerplant.

It may appear to the casual observer that the delay between contractor selection and prototype funding represents a stretchout for the program. But a closer examination of the situation does not support this thesis. The interval—and we predict it will be several months at the most—is necessary to do additional technical and legislative homework. Failure to do this work now could result in permanent damage to the program by the Congress, which must approve development funding, and by the world airlines, which are correctly demanding a superior U.S. product.

Growing Prospects

There are many critics of the supersonic transport program who will remain vociferous until the performance of this vehicle in airline service refutes their theories with facts. We would be more impressed with most of the arguments now advanced against the supersonic transport program if we had not heard most of them before—warning against the dangers of switching from piston engine to jet transports. That was just 10 years ago, when the subsonic jet transport was at about the same stage in its development cycle as the supersonic transport is today.

Looking back over the four years since the U.S. supersonic transport program was launched, it is apparent that its prospects have grown visibly brighter with each passing year. Technology has progressed much farther and faster than seemed possible at the program’s inception. In that same interval the air transport business has experienced the greatest expansion of any business in world history, creating an economic climate for the supersonic transport market far bigger than anybody originally imagined.

The U.S. supersonic transport will prove to be an important element in the future of this country’s domestic economy. It will also play a vital role in alleviating the international balance of payments problem. It should be pushed firmly now at the fastest technically feasible pace to realize the full potential that it offers for this nation.

—Robert Hotz