DOUBLE PARASOL, FAVORABLE INTERFERENCE AIRPLANE

Inventors: Gottfried O. Friebel, Bellevue; Robert M. Kulfan, Kirkland, both of Wash.

Assignee: The Boeing Company, Seattle, Wash.

Filed: Aug. 13, 1979

Abstract

An aircraft intended to fly at supersonic Mach numbers is disclosed. The aircraft utilizes a double parasol wing arrangement, with a power plant nacelle located under the wing on each side of the fuselage. Each nacelle is located at the focus of a reflection parabola formed by the undersurface of each wing. In flight the shock wave pressure field created by the nacelles is reflected and redirected by the parabolic wing surface and thereby transformed into beneficial lift. The separation distance between each wing and its respective nacelle is arranged to maximize multiple reflections to thereby further enhance the lift created.

Primary Examiner—Galen Barefoot

Attorney, Agent, or Firm—B. A. Donahue; R. E. Suter

ABSTRACT

Aircraft intended to fly at supersonic Mach numbers is disclosed. The aircraft utilizes a double parasol wing arrangement, with a power plant nacelle located under the wing on each side of the fuselage. Each nacelle is located at the focus of a reflection parabola formed by the undersurface of each wing. In flight the shock wave pressure field created by the nacelles is reflected and redirected by the parabolic wing surface and thereby transformed into beneficial lift. The separation distance between each wing and its respective nacelle is arranged to maximize multiple reflections to thereby further enhance the lift created.

5 Claims, 12 Drawing Figures
Fig. 9

Effect of Body Slenderness on Wing/Body Separation

Fig. 10

Effect of Body Slenderness on Wing/Body Separation
Fig. 11

Effect of inlet diameter on optimum wing/body separation.

\[h = \frac{D}{D_m} \sqrt{1 - \left(\frac{D}{D_m}\right)^2} \]

Fig. 12

Effect of nacelle area growth on interference lift.

\[\Delta C_L = \frac{2}{B_{S,REF}} (A_{\text{MAX}} - A_{\text{INLET}}) \]

Mach = 3.0
DOUBLE PARASOL, FAVORABLE INTERFERENCE AIRPLANE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to aircraft capable of flight at supersonic Mach numbers and, more particularly, to aircraft of the type described which utilize favorable aerodynamic interference effects which reduce drag and increase lift to provide efficient extended supersonic cruise. Such aircraft have both military and commercial utility.

2. Background of the Invention

Existing supersonic aircraft typically employ thin, highly swept wings and slender bodies which utilize an integrated propulsion system in an attempt to produce aerodynamically efficient designs. However, with such conventional designs, the lift to drag ratio decreases significantly at higher Mach numbers. This is due, in part, to decreased lifting effectiveness of the wing surfaces and increased wave drag at such velocities.

It has long been theorized that these difficulties could be alleviated if such aircraft were able, in some manner, to utilize mutual interactions of the flow fields generated at higher Mach numbers to augment lift and reduce drag. Initially it was believed this could be accomplished by reacting shock waves against existing wing designs to produce an upward or lifting force component. To create the necessary shock wave(s) at the appropriate location(s), it was suggested that volume elements, such as non-flight functional wedges or semi-cones, be positioned on the lower surface of the wing. This design has not proven to be practical because of excessive drag produced by such bodies. Another design that offered some promise, at least in theory, was the semi-ring wing, which utilized a full body or fuselage suspended beneath a wing formed as a semi-annulus with the body at its diametrical center. Although this arrangement is capable of capturing shock disturbances beneath the wing, the structural requirements of the member needed to connect the large body to the wing caused a significant drag increase which substantially offset drag reduction of the favorable interference effects. This fact and associated structural problems of the connecting member proved this design impractical. Other designs involving a wing-suspended fuselage suffer similar disadvantages. Another disadvantage occurs because of the size of the fuselage body generally associated with such designs. That is, the fuselage-wing separation distance necessary for optimum wave drag cancellation effects becomes too large to permit optimum multiple wave reflections. Since multiple reflections are a significant factor in the augmentation of lift and wave drag cancellation is a significant factor in drag reduction, benefits of these designs are inherently limited. Various other proposed designs such as the wave rider, the Buseman biplane and the Nonweiler wing, while offering theoretical promise, have produced no practical aircraft.

It is, accordingly, an object of the present invention to provide a practical, favorable interference aircraft that overcomes these and other disadvantages and limitations of the prior art.

It is another object of the invention to provide a practical, favorable interference aircraft that requires no single function elements to produce the necessary pressure fields.

It is a further object of the invention to provide a practical, favorable interference aircraft that utilizes the pressure fields generated by wing-suspended engine nacelles reacting against parabolically curved wings to augment lift and reduce drag for efficient, extended, supersonic cruise.

It is another object of the invention to produce a practical, favorable interference aircraft that utilizes wing mounted nacelles designed to optimize pressure field generation.

It is still another object of the invention to provide a practical, favorable interference aircraft that utilizes a wing plan form which reduces negative pressure effects and associated drag.

SUMMARY OF THE INVENTION

Briefly, these and other objects are achieved in accordance with the structural aspects of an example of the invention in which a wing member extends from each side of the fuselage. Each wing member is curved in the span-wise direction to form a lower surface reflection parabola. An engine nacelle is located at the focus of the reflection parabola created by each wing so that portions of the pressure field created by each nacelle, are redirected by the wing lower surface and transformed into beneficial lift. The parabolic curvature of the wings and the wing/nacelle separation distance, are determined so as to maximize wave cancellation effects and thereby reduce drag. The wing top plan form is designed so that the leading edge of each wing generally matches the bow shock produced by the respective nacelle and the trailing edge minimizes negative interference pressures. The fuselage is area-ruled to optimize fuselage/nacelle and fuselage/wing interference effects.

Further details of these and other novel features and their operation and cooperation as well as additional objects and advantages of the invention will become apparent and be best understood from a consideration of the following description taken in connection with the accompanying drawing which is provided by way of illustrative example only.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 schematically illustrates one principle of the invention.

FIG. 2 is a front view of the novel favorable interference aircraft embodying the inventive principles.

FIG. 3 is a top view of the aircraft of FIG. 1.

FIG. 4 is a side view of the aircraft of FIG. 1.

FIG. 5 is a sectional view along lines 5-5 of FIG. 2 to show the novel nacelle contour as well as its location and orientation with respect to the wing.

FIG. 6 illustrates a theoretical nacelle pressure distribution on a plane above the nacelle.

FIG. 7 illustrates the wing top plan form of the novel favorable interference aircraft with a theoretical nacelle pressure distribution superimposed thereon.

FIG. 8 illustrates the effect of parasol anhedral on nacelle wave drag.

FIG. 9 is a plot similar to FIG. 8 illustrating the effect of parasol lateral anhedral on fuselage wave drag.

FIG. 10 is a front view illustrating the effect of parasol lateral anhedral on fuselage wave drag.

FIG. 11 illustrates the theoretical effect of body fineness ratio on optimum separation distance.
FIG. 12 illustrates the effect of nacelle area growth on interference lift and illustrates the meaning of the term fore cowl angle.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As used herein, the following abbreviations and symbols have the meaning listed.

\(C_p \): pressure coefficient
\(l \): length
\(D \): diameter, drag
\(D_e \): equivalent diameter
\(D_{f(t)} \): isolated drag coefficient
\(C_{p(w)} \): wave drag coefficient
\(D_{max} \): maximum diameter
\(h \): diverter height
\(\beta \): \(\sqrt{m^2} \)
\(\Gamma \): dihedral
\(S \): area
\(\Delta \): incremental
\(C_L \): lift coefficient

With specific reference now to the figures in detail, it is strongly believed that the particulars shown are by way of example and for purposes of illustrative discussion only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and structural concepts of the invention. In this regard, no attempt is made to show or discuss structural details of the apparatus in more detail than is necessary for a fundamental understanding of the invention. The description taken with the drawing will make it apparent to those skilled in the mechanical arts how the invention may be embodied in practice. Specifically, the detailed showing is not to be taken as a limitation upon the scope of the invention which is defined by the appended claims forming, along with the drawing, a part of the specification.

One of the basic principles underlying the practical, favorable interference aircraft of the invention is illustrated in FIG. 1. A pair of parabolic reflection surfaces 2, created by the underside of a pair of wings (not shown) extend from a fuselage body 4. A power plant nacelle 6 (only one shown), located at the focus of each parabolic surface 2 produces a pressure field, denoted by arrows A. As shown, as upwardly and outwardly directed portions of pressure field A impinge upon parabolic reflection surface 2, they are reflected, and thereby redirected, to produce a component of force acting in a direction to produce lift. This arrangement is, of course, symetric about a fuselage center line 8. The application of this principle to the design of the practical, favorable interference aircraft, may be best seen with reference to FIGS. 2, 3, 4 and 5. It should be noted that while the preferred embodiment represents an aircraft having a gross takeoff weight of approximately 26,000 pounds and a design Mach number of three, the principles and design criteria disclosed and claimed herein may be applied to aircraft having other design parameters without departing from the spirit and scope of the invention.

Referring now to FIGS. 2, 3, 4 and 5, an aircraft generally designated 10, is seen to include a centrally located main body or fuselage 12 from which extends the conventional tricycle-type landing gear assembly 14. Since assembly 14 forms no part of the inventive concept, it will not be described in further detail.
clearly seen in FIGS. 5 and 9 the optimum location 35 for nacelle center line 36 is approximately 70 to 80 percent of the maximum nacelle diameter below the wing. This illustration also clearly indicates that nacelle wave drag can be reduced by approximately 10 to 40 percent, depending on the lateral curvature of the parasol wing.

As previously noted, to maximize the beneficial effects of multiple shock reflections it is desirable to have a minimum separation distance while at the same time achieving maximum wave drag cancellation. It has been discovered that nacelle fineness or slenderness ratio and inlet diameter have the theoretical effect illustrated in FIGS. 10 and 11, and the nacelles can be optimized accordingly.

Since a basic large body or fuselage generates a more intense pressure field and thereby more interference lift than a basic nacelle, it is desirable to modify the nacelle to increase the pressure field and thereby produce an interference lift which more closely approximates that generated by the fuselage. One way this may be accomplished is to increase the fore cowl angle which is defined as the angle between the exterior surface of nacelle 22 immediately aft of the inlet and a horizontal line tangent to that point on the exterior surface of nacelle 22 where the diameter is at a maximum. Theoretical calculations, shown in FIG. 12, indicate an angle of about 4° to be optimum. Although such a design results in large negative pressures associated with the nacelle boat tail, at the Mach 3.0 design condition, this negative pressure field falls aft of the wing trailing edge and creates no adverse effects. At lower, off design Mach numbers the shock wave pattern from the nacelle moves forward on the wing, causing areas of negative pressure to fall thereon and would tend to reduce the interference lift at off design Mach numbers. A possible alternative aerodynamic solution is a non symetric nacelle design that matches the area growth of the top half of a nacelle modified to produce only positive pressures but has an exit area equal to the original nacelle.

There has thus been described an aircraft capable of extended range while cruising at supersonic Mach numbers through utilization of favorable aerodynamic interference effects. Variations and modifications will occur to persons skilled in the art without departing from the spirit and scope of the invention. Accordingly, it is intended the appended claims cover all such variations and modifications.

What is claimed is:

1. An aircraft capable of extended cruise at high Mach numbers through utilization of favorable aerodynamic interference effects by mutual interaction of flow fields 55 comprising:

a fuselage, area-ruled to optimize favorable interference effects and having a longitudinal center line defining a plane of symmetry;

a wing attached to said fuselage on opposite sides of said plane of symmetry, each wing having a lateral curvature extending from root to tip;

a jet power plant nacelle having an axial center line and a length substantially equal to the length of the local wing chord being suspended beneath each said wing;

each said wing forming a substantially parabolic lower reflection surface means for reflecting and redirecting portions of a shock wave pressure field generated by each said nacelle at supersonic speeds to produce lift, each reflection surface means comprises a parabolically curved inboard portion adjacent said root, a substantially planar central portion and a parabolically curved outboard portion adjacent said tip, the respective nacelle center line being located at the focus of each parabolically curved portion to maximize the shock wave pressure field generated by each nacelle.

2. An aircraft as defined in claim 1 wherein each nacelle has an inlet at one end and an outlet at the other, said nacelle having its outer surface contoured from inlet to outlet so as to maximize the pressure field and thereby the interference lift produced.

3. An aircraft as defined in claim 2 wherein said contour comprises the outer diameter of each nacelle increasing from said inlet to a point of maximum diameter between said inlet and said outlet and then decreasing from said point of maximum diameter to said outlet.

4. An aircraft as defined in claim 3 wherein the angle of said nacelle outer surface between said inlet and said point of maximum diameter and a line tangent to said point of maximum diameter is approximately 4°.

5. An aircraft as defined in claim 1 wherein each wing, in top plan form, comprises a leading edge and a trailing edge;

that portion of said leading edge located generally outboard of said nacelle center line being shaped to substantially follow a curve formed by the projection of a bow shock generated by said nacelle at the aircraft design speed upon the plane of the respective wing;

that portion of said leading edge located generally inboard of said nacelle center line forming an extension of said outboard portion and extending to said fuselage along a parabolic curve having its focus on said aircraft center line;

said trailing edge being parabolically curved about a focus which lies on the mean aerodynamic chord of the respective wing to cut off negative pressure effects.