THREE RECEIVE 20-YEAR PINS

In informal ceremonies held last Friday, Dr. H. J. E. Reid, Director, presented ruby-studded 20-year service emblems to Blake W. Corson Jr., Head of 16-Foot Transonic Tunnel; Roland E. Olson, Head of Tank 1, and William J. Loviner, East Machine Shop.

Corson was born in Richmond. He graduated from John Marshall High School and received his B.S. degree in Mathematics from the University of Richmond. He entered on duty at the Laboratory on October 11, 1935 as an under scientific aide at PRT. He transferred to 16-Foot in 1941 and was appointed assistant head in 1944. He was appointed to his present position as head of the tunnel in 1947.

Olson hails from Lake Park, Neosota. He graduated from Lake Park High School, received his B.S. degree in Mathematics. (Continued on page 3)

SAFE DRIVING DAY SET FOR DECEMBER 1

Thursday, December 1 has been proclaimed by President Dwight Eisenhower as the National observance of Safe Driving Day.

The safe driving program is intended to demonstrate that traffic accidents can be reduced materially when all motorists and pedestrians do their part.

The Laboratory is cooperating in the program by asking all staff members and their families to make an especial effort next Thursday to concentrate on going through the entire 24-hour period without a traffic mishap.

The watchword of this year's Safe Driving Day campaign is "Make Every Day S-D Day."

A successful observance might make motorists and pedestrians realize that, if they can greatly reduce accidents on S-D Day, they can do so every day in the year.

WHITCOMB WINS COLLIER TROPHY FOR AREA RULE

Richard T. Whitcomb, assistant head of the 8-foot Transonic Tunnels Branch of the Full Scale Research Division, has been officially advised by the National Aeronautic Association that he has been unanimously elected winner of the Collier Trophy Award for his discovery of the Area Rule, revolutionary aircraft design concept.

Election of Whitcomb was made at a meeting of the Collier Trophy Committee in Washington, D.C., on October 7, it was announced by T. G. Lanphier Jr., president of the NAA, custodian of the coveted trophy.

Presentation of the Trophy, for the year 1954, will be made by Lanphier during the annual Wright Day Dinner, sponsored by the Aero Club of Washington, at the Sheraton Park Hotel on December 7. The affair honors the fifty-second anniversary of the first flight at Kitty Hawk in 1903.

Among those who are planning to attend the award dinner are Dr. H. J. E. Reid, Director; Floyd L. Thompson, associate director; John Stack, assistant director; T. A. Harris, chief of the Stability Research Division; Eugene C. Draley, chief of the Full Scale Research Division; Axel T. Mattson, head of the 8-foot Transonic Tunnels Branch, and George B. Colonna, of Hampton.

Whitcomb entered on duty at the Laboratory March 1, 1943, after he was graduated "with high distinction" at Worcester Polytechnic Institute. He was born February 21, 1921 in Evanston, Illinois.

An illustrated article on the Area Rule is included in this week's Collier's Magazine, along with an announcement that Dick Whitcomb is the winner of the 1954 Collier Trophy. Copies of the December 9 issue of Collier's Magazine are now on sale in both the East and West cafeterias.
Award of the Collier Trophy to Richard T. Whitcomb marks the fifth time that the NACA or members of the research staff have won or shared America's top aviation honor.

The coveted trophy, established in 1911, is awarded annually "for the greatest achievement in aviation in America, the value of which has been thoroughly demonstrated by actual use during the preceding year." NACA's first Collier Trophy, for 1929, was for scientific research at Langley leading to development of the cowling for radial aircooled engines. The cowling, the principle of which is incorporated in the design of virtually every modern-day airplane, was the result of experiments conducted in 1928 in the Propeller Research Tunnel, dismantled in 1950 to make way for construction of the 8-foot Transonic Pressure Tunnel.

There is a similarity in the achievement which netted the NACA its first Collier Trophy and that of the current winner. Both accomplishments, without the benefit of added power, changed the shape and increased the speed of aircraft - the cowling by reducing air resistance around the previously-exposed radial engine; and the area rule by scientifically pinching the fuselage to cut aircraft drag and enable high-speed jets to move easily past the sonic barrier.

One of the first important practical applications of the NACA cowling was on the Lockheed Air Express - a single-engine monoplane which established a new Los Angeles to New York non-stop record in 1929, with Frank Hawks as the pilot. The time for the flight was 18 hours, 21 minutes and 59 seconds.

The Lockheed Aircraft Corporation credited the NACA cowling with increasing the airplane's speed from 157 to 177 miles per hour. An official of the aviation firm sent the following telegram to the Langley Laboratory on February 7, 1929, shortly after the historic cross-country flight: "Record impossible without new cowling. All credit due NACA for painstaking and accurate research and generous policy!"

A quarter-century later, application of the area rule design concept on a new all-weather interceptor, the Convair F102, resulted in a speed gain of more than 100 miles per hour without an increase in engine power. The subsonic F102, modified on the basis of the area rule, became the supersonic F102A, which is now in production for the Air Force.

Another airplane with the area rule is the Grumman F11F-1. The concept, characterized by an indented fuselage at the point where the wings are attached, was drawn into the original design, making it possible for the Navy shipboard fighter to travel supersonically in level flight.

** COLLEER TROPHY **

The Collier award announced this week is the 40th since the recognition program was started in 1911 with the presentation of the first trophy to Glenn H. Curtiss, aviation pioneer, for his successful development of the hydroaeroplane. No awards were made beginning 1917 through 1920 because of the emergency created by World War I.