NASA Proposes Laser Track Satellite

PARIS (AP) — The United States National Aeronautics and Space Administration proposed Wednesday an international tracking system using Lasers to follow the S66 satellite this spring.

The proposal was made at the third International Congress of Quantitative Electronics by Richard Barnes, head of international programs for NASA.

A Laser is a light beam that can be directed long distances without dispersing, and can be made intense enough to burn rubies.

French officials at the meeting at UNESCO House reported they were willing to participate. Soviet officials said the experiment seemed interesting, but reserved their response.

The satellite would weigh 114 pounds and would be placed into a near-polar orbit, meaning it would pass over land during most of its trip.

It would be the first attempt to track a satellite by Laser, U.S. delegates said. Formerly satellites were tracked by radio and radar from U.S. stations in many countries. This time each country would set up and control its own stations, the United States would furnish the necessary information on the satellite.

Laser tracking should be faster and more precise, and with the S66 satellite should enable scientists to determine the profile of the ionosphere, experts said.

NASA And AEC Shots Slated At Wallops

Langley Research Center's Scout rocket will get another workout this month when it serves as a booster for a re-entry flight demonstration project at Wallops Island.

The Atomic Energy Commission has announced plans to flight test a nonradioactive mockup of a space reactor later this month to get data on how such a device can be designed to break apart and disintegrate when it reenters the atmosphere.

The SNAP-type (systems for nuclear auxiliary power) reactors will be placed on an instrumented reentry vehicle at the top of a Scout rocket which will be launched for AEC by NASA from the Wallops Station.

The launching, which will put the reactor mockup in an 800-mile suborbital trajectory, will be no earlier than next Monday.

DESIGNATED Re-Entry Flight Demonstration-1, the test is one of a series of nonnuclear flight tests to evaluate the safety of SNAP aerospace nuclear systems in operation. Three tests are planned over the next two years. None of the trajectories will be over inhabited areas.

In the RFD-1 test, an inert, nonradioactive mockup of a SNAP-10A space reactor with dummy fuel rods will be launched by the four-stage Scout vehicle.

The planned RFD-1 trajectory passes about 125 miles southwest of Bermuda. As the reentry vehicle passes within optical tracking sight to Bermuda, it is expected that the dummy fuel rods will be ejected, the reactor will break apart and all the components will be subjected to reentry heating. Viewing of the fuel rod burn-up will be aided by the burning of tracer material.

Nuclear energy is a potential superior source of power for certain space missions. It may prove to be the sole power source for lunar missions, communication stations and electric propulsion units. Development of safety features of nuclear devices is a major phase of the AEC's SNAP program for the development of compact, lightweight auxiliary power sources for use in space, on land and in the sea.

The goal is to design devices which will operate at desired power levels in space without presenting a radiation hazard to the earth's population.