This galaxy, long known to astronomers as NGC 5128, is among the most powerful sources of radio energy in the universe, pouring out unimaginable amounts of energy. According to Dr. Hugh L. Dryden, deputy administrator of the National Aeronautics and Space Administration, the energy coming from such sources is being produced by “a mechanism that we do not remotely understand.”

This is a large order. The average galaxy contains something like 10,000 million stars, or “suns.” (The Milky Way, the galaxy we are in, is about 10 times larger than the average with about 100,000 million stars, of which our sun is but one.)

Thus, the question of what is producing the unimaginable amounts of energy behind the radio noise astronomers are detecting is one of science’s most disturbing questions, Dr. Hugh L. Dryden, deputy administrator of the National Aeronautics and Space Administration (NASA) noted at Williamsburg.

DR. DRYDEN WAS a major speaker at ceremonies Monday that marked the transference of federal land to the Virginia Associated Research Center.

An English astronomer proposed several years ago that the energies of strong radio sources might be due to large-scale nuclear explosions in galaxies. Dr. Geoffrey Burbidge theorizes there are galaxies so thickly populated at their centers that when one star explodes as a supernova (it suddenly flares up to a brightness nearly equal to that of a whole galaxy), it heats an adjacent star to the nuclear explosion point. This star touches off another, and so on. Thus, a chain reaction of exploding stars rings through a star cluster.

But, judging from Dr. Dryden’s remarks, even this theory is inadequate. And, at a meeting of the National Academy of Sciences in late 1961, it was stated that “the more astronomers look into the mechanism of providing enough energy for a radio source, the more puzzled they become.”

Thus, what is really happening out there remains a mystery.

Powerful Forces Detected

By Beverly Orndorff
T-D Science Editor

Radio energy lies in the direction of the constellation Cygnus (the Northern Cross, which itself is some 270 million light years away. A light year is the distance light travels in a year, at the rate of 186,000 miles a second. This works out to six million million miles.

At first, it was thought that the energy was the result of a collision of two giant galaxies. But, noted the New York Times in late 1961, “further studies have forced the abandonment of this theory.”

AN ENGLISH astronomer proposed several years ago that the energy of strong radio sources might be due to large-scale nuclear explosions in galaxies. Dr. Geoffrey Burbidge theorizes there are galaxies so thickly populated at their centers that when one star explodes as a supernova (it suddenly flares up to a brightness nearly equal to that of a whole galaxy), it heats an adjacent star to the nuclear explosion point. This star touches off another, and so on. Thus, a chain reaction of exploding stars rings through a star cluster.

But, judging from Dr. Dryden’s remarks, even this theory is inadequate. And, at a meeting of the National Academy of Sciences in late 1961, it was stated that “the more astronomers look into the mechanism of providing enough energy for a radio source, the more puzzled they become.”

Thus, what is really happening out there remains a mystery.